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Quantum Mechanics on Path Space and Point
Interactions on a Circle
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In this paper we analyze quantum mechanics formulated in terms of wave functions
defined on what may be called the path space, rather than the traditional physical
space. An explicit theory of quantum mechanics on a circle is given which
can be readily applied to describe a superconducting current flowing around a
superconducting ring with a Josephson junction. The path space approach provides
an elegant and natural interpretation of the current flow across the Josephson
junction. A striking feature of the theory is the emergence of a superselection
rule inherent in the fundamental structure of the theory, without needing additional
ad hoc assumptions. Other point interactions are discussed, including a d-potential
on a circle and the standard Kronig–Penny model of a crystal lattice on the
real line.

1. INTRODUCTION

In 1931 Dirac [1] pointed out a striking ambiguity in the wave function
f(x), namely that the position probability density function .f(x).2 only deter-
mines the wave function up to an arbitrary phase factor. Writing the wave
function in the form

f(x) 5 R(x)ei⁄S(x), i⁄ 5 i/" (1)

where R(x) and S(x) are real-valued functions of x, it is clear that adding a
constant to the phase function S produces no physically observable conse-
quences. In other words, it is the phase difference which is physically signifi-
cant, not the actual value of the phase. The situation resembles the potential
function in classical mechanics, i.e., it is only the potential difference which
is significant. This realization opens the way to generalize quantum mechanics
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to embody multivalued wave functions. A formal approach is through the
introduction of a path space and functions defined on the path space. There
have been quite a number of general formulations along such lines. In this
paper we shall endeavor to keep the mathematics to a bare minimum by
avoiding general and abstract discussions. Instead we shall confine ourselves
to concrete examples which have direct physical applications, making full
use of some of the existing general formulations [2–4].

2. PATH SPACE

Let M be a Riemannian manifold and m a point in M. In the standard
formulation of quantum mechanics, with M as the physical space, we would
first introduce complex-valued functions f(m) on M which are square-integ-
rable with respect to a given volume element dm(m) on M, i.e.,

#
M

f*(m)f(m) dm(m) # ` (2)

With the usual definition of scalar product

^f.c& 5 #
M

f*(m)c(m) dm(m) (3)

these functions form a scalar product space which can be completed to form
a Hilbert space, which will be denoted by *(M). A function f in *(M) is
normalized if

#
M

f*(m)f(m) dm(m) 5 1 (4)

All functions we refer to from *(M) are assumed to be normalized from
now on. Functions f in *(M) give rise to probability density functions
.f(m).2, and any two functions f1, f2 in *(M) differing by an arbitrary local
phase2 a1,2(m),i.e.,

f1(m) 5 ei⁄a1,2(m)f2(m) (5)

give rise to the same probability density function since .f1(m).2 5 .f2(m).2.
For a quantum particle moving in M, the standard approach is to associate
the Hilbert space *(M) with the particle and f in *(M) as possible wave
functions, with .f(m).2 interpreted as the position probability density function
of the particle on M. We can see that there is no observational distinction

2 The phase is local in that its value is dependent on m P M. If it has a constant value for all
m P M it is called global.
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Fig. 1. Two paths in M joining m0 to m.

between wave functions differing by an arbitrary global phase factor since
it does not affect any expectation values.3 As a consequence of this, the states
of the system are identified one-to-one with one-dimensional subspaces of
*(M) [6, 7].

The phase indeterminacy can be given a systematic and geometric formu-
lation which can take into account specific topological properties of M. Dirac
already realized this possibility and proposed a kind of path space formulation
of quantum mechanics which we now discuss [1].

Given a manifold M, choose some point m0 P M, which may be called
the origin and is to be held fixed from now on. We assume that M is connected
so that any point m in M may be joined to m0 by a path.4 Let sm be any
path from m0 to m. There is an infinite set Pm of paths

Pm 5 {sm , s8m, s9m, . . .} (6)

linking m0 to m, of which sm and s8m are but two (see Fig. 1).
We shall denote by

P(M) 5 {Pm: m P M} (7)

the set of all paths from the origin m0 to all points m P M, and refer to
P(M) as the path space on the manifold M centered at the origin m0.

Two paths may be different in a variety of ways. There is a sophisticated
scheme to classify paths, i.e., homotopy theory. We shall not digress into

3 A local phase will generally affect the expectation value, albeit not the position probability
density function.

4 A path in a manifold means a differentiable curve in the manifold.
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this branch of mathematics. Instead we shall confine ourselves to manifolds
M of one and two dimensions where we can classify paths in an intuitive
and pictorial manner. Moreover, many mesoscopic and macroscopic quantum
systems are confined to one- or two-dimensional physical spaces. Two paths
sm and s8m on M are said to be homotopic or homotopically equivalent if
they can be continuously deformed into one another. Whether two paths are
homotopic depends on the topological nature of M. If M is the plane R2,
then any two paths, as depicted in Fig. 1, are homotopic. However, if M is
a plane with a hole, i.e., with a region removed, then not all the paths are
homotopic. Figure 2 serves to illustrate this situation. Here, not all paths are
homotopic; the missing hole spoils the topology of the plane, so that not all
paths are continuously deformable into one another. We have to examine
how the paths enclose the hole.

The paths s8m and s9m in Fig. 2a are homotopic, but neither is homotopic
to the path sm because of the missing hole. The path sm is not homotopic
to the path sm,1 in Fig. 2b, which is formed by a loop (closed curve) +1

around the hole in an anticlockwise direction once followed by sm , since
the loop encloses the hole, it cannot be contracted to the point m0.

Path sm in Fig. 2a is not homotopic to the path sm,21 in Fig. 3, since
sm,21 is made of a loop +21 around the hole in the clockwise direction once
followed by sm.

It is generally the case that two paths are homotopic if they go around
the origin in the same way. Before we classify paths we introduce a classifica-
tion of the loops starting and ending at m0 in P(M):

Fig. 2. Paths in M.
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Fig. 3. The path sm,21.

Class 0: [+0] 5 {all loops not enclosing the hole}
Class 1: [+1] 5 {all loops circling the hole once in an anticlock-

wise direction}
Class 21: [+21] 5 {all loops circling the hole once in a clockwise

direction}
:

Class l: [+l] 5 {all loops circling the hole l times in an anticlockwise
direction, , . 0}

Class 2l: [+2l] 5 {all loops circling the origin l times in a clockwise
direction, l . 0}

:

These are called homotopic classes of loops, and the integer l of the
class [+l] is known as the winding number of the class. A member of [+l]
will be denoted by +l. We shall use this classification of loops to classify paths.

Let [sm,0] denote the set of all paths from m0 to m curving around the
hole in an anticlockwise direction, but not enclosing the hole. The path sm

of Fig. 1a is an element of this set. A general path in Pm will either be in
the set [sm,0] or will circle the hole a number of times before ending up at
the point m. For example, in Fig. 2b the path sm,1 is a sequence of two curves
+1 P [+1] followed by sm P [sm,0]. We shall denote this symbolically by

sm,1 5 sm ∗ +1 (8)

Similarly, for the path sm,21 in Fig. 3 we have

sm,21 5 sm ∗ +21 (9)

It follows that any path in Pm which is homotopic to sm,1 is of the form of
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a sequence of two curves, one from [+1] followed by one from [sm,0]. We
can collect all paths in Pm homotopic to sm,1 shown in Fig. 2 to form a class
to be denoted by

[sm,1] 5 [sm,0] ∗ [+1] (10)

Generally, we can divide all the paths in Pm into such classes according to
whether they are homotopic to a sequence of two curves, one from [+l]
followed by one from [sm,0]. Such classes are to be denoted by

[sm,l] 5 [sm,0] ∗ [+l], l 5 0, 6 1, 6 2, . . . (11)

with a member of the class denoted by sm,l.
Clearly the homotopic nature of the path space is independent of the

choice of the origin.

3. FUNCTIONS ON PATH SPACE

Consider a mapping f of the set of paths on M to the set of complex
numbers C:

f : P(M) → C by sm, l → f(sm,l) P C (12)

Such a mapping may be regarded as a complex-valued function on the path
space P(M). The value of the function f(sm,l) depends on the endpoint m as
well as the path sm,l. In other words, f(sm,l) may be viewed as a multivalued
function on M.

We do not want arbitrary functions on P(M). Instead we want a smaller
set of functions on P(M) satisfying the following five physically motivated
conditions [2–4]:

1. Single-valueness up to a phase as functions on M. A function f on
P(M) is said to be single-valued up to a phase as a function on M if its
modulus . f(sm,l). depends only on the endpoint m, not on the path linking
the origin to m. This condition ensures that f(sm,l) can give rise to a well-
defined probability density function . f(sm,l).2 on M whenever . f(sm,l).2 is
integrable and normalized with respect to a chosen volume element for
integration on M.

This requirement means that the path dependence of the function will
be present only in the phase, i.e., given two paths s8m,l8 and sm,l, there exists
a real-valued function q(s8m,l8, sm,l) such that

f (s8m,l8) 5 {exp[i⁄q(s8m,l8, sm,l)]} f(sm,l) (13)

We call q(s8m,l8, sm,l) a path difference function between paths s8m,l8 and sm,l.
Generally q(s8m,l8, sm,l) may be different for different f.
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2. Universal path difference function. Two functions f and g on P(M)
are said to share a path difference function q(s8m,l8, sm,l) if

f (s8m,l8) 5 {exp[i⁄q(s8m,l8, sm,l)]}f(sm,l) (14)

g(s8m,l8) 5 {exp[i⁄q (s8m,l8, sm,l)]}g(sm,l) (15)

The path difference function in Eq. (13) is said to be universal to a set of
functions on P(M) if this path difference function is shared by all the functions
in the set.

A set of functions on P(M) which are single-valued up to a phase as
functions on M and which share a path difference function q(s8m,l8, sm,l) form
a vector space. To appreciate this, let f and g be two functions on P(M). Let
us try to define their sum f 1 g as a function on P(M) by

( f 1 g)(sm,l) 5 f(sm,l) 1 g(sm,l) (16)

Then we must have

( f 1 g) (s8m,l8) 5 f(s8m,l8) 1 g(s8m,l8) (17)

If they share a path difference function, then their sum, as defined by Eq.
(16), will share the same path difference function, i.e.,

( f 1 g)(s8m,l8) 5 f (s8m,l8) 1 g(s8m,l8)

5 {exp[i⁄q(s8m,l8, sm,l)]} f (sm,l) (18)

1 {exp[i⁄q(s8m,l8, sm,l)]}g(sm,l)

5 {exp[i⁄q(s8m,l8), sm,l)]}( f (sm,l) 1 g(sm,l)) (19)

5 {exp[i⁄q(s8m,l8, sm,l)]}( f 1 g)(sm,l)

The desire to form a vector space is motivated by the need for a superposition
principle in quantum mechanics. In other words, the state space of an orthodox
quantum system must be a vector space so that we can form a superposition
of two different states. It follows that if we are to use functions on path space
to represent the states of a given quantum system, we must choose one
definite universal path difference function q(s8m,l8, sm,l) to be shared by all
its states. A new universal path difference function would then correspond
to a new physical system and vice versa. This will have important conse-
quences on the properties of quantum theory formulated on path space
functions.

The path difference function q(s8m,l8, sm,l) may be regarded as a measure
of the difference between the paths s8m,l8, and sm,l. We expect q(s8m,l8,
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sm,l) 5 0 if s8m,l8 and sm,l are identical. A natural generalization of this to
homotopic paths is given below.

3. Homotopic functions. A function f on P(M) is called a homotopic
function if at every point m P M the path difference function for any two
homotopic paths s8m,l, and sm,l satisfies

q(s8m,l, sm,l) 5 0 (20)

so that

f(s8m,l) 5 {exp[i⁄q(s8m,l, sm,l)]}f(sm,l) 5 f(sm,l) (21)

for homotopic paths.
We are now in a position to relate functions on the path space P(M) to

functions on M in the following manner:

(a) For each m P M choose a direct path from m0 to m, sm,0 P [sm,0].
Then define a function f on these direct paths for all m P M.
Since the paths are chosen and fixed from the start, this function
f becomes a function on M, i.e., it is a single-valued function on
M with a unique value f(m) at each point M.

(b) Choose a path difference function q(sm,l, sm,0) and define a function
f on P(M) in terms of f by

f(sm,l) 5 {exp[i⁄q(sm,l, sm,0)]}f(m) (22)

In general f is multivalued on M, i.e., the value of f at M changes with the
winding number l. If the manifold M is the plane R2 without any holes, the
situation simplifies considerably, since all paths from m0 to m are homotopic
to sm,0. It follows that a homotopic function f on the path space P(M)
coincides with a single-valued function f on M. There is then no point in
generalizing functions on M to P(M). Quantum mechanics formulated in
terms of homotopic wave functions on the path space P(M) will be identical
to the usual theory in terms of wave functions on the physical space M.

When M does not have the topology of R or R2 a theory based on the
path space will have new features. Before we can do this we need to introduce
further conditions on the path space functions.

In standard quantum theory on M, any wave function can be given a
phase factor without affecting the state described by the wave function, as
long as the phase is a global one. To reflect this property we shall introduce
the following item.

4. Globally homotopic functions. A homotopic function f on P(M) is
said to be a global one if the path difference function amounts to the addition
of a phase which is dependent on the winding numbers l and l8 and independent
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of m P M. This means that the path difference function q(s8m,,8, sm,,) for
any pair of curves sm,, and s8m,,8 is of the form

q(s8m,,8, sm,,) 5 q(s8m8,,8, sm8,,) 5 q(,8, ,) (23)

We can rewrite Eq. (22) as

f(sm,,) 5 ei⁄q(,,0)f(m) (24)

To arrive at the value f(sm,,), we can imagine taking the value of f(m) around
a loop of the hole l times, with each loop around resulting in an additional
phase. We desire the path difference function to vary in a well-behaved
manner as we increase the winding number. This is made clear in the next item.

5. Additivity of the path difference function. A path difference function
is said to be additive if it increases by the same amount as we increase the
winding number by 1, i.e., q(,, 0) is of the form

q(l, 0) 5 l"l for some real parameter l P [0, 2p) (25)

So, each time we loop the hole, we simply pick up a phase l; this phase is
to be referred to as a universal path difference constant.

Let ^l(P(S1)) denote the set of functions on P(S1) satisfying the five
properties listed above with a chosen universal path difference constant l.
Since every function f in ^l(P(S1)) takes the same value for homotopic
paths, we can reduce the set ^l(P(S1)) of functions on the space of paths to
a corresponding set of functions on the space {[sm,l]} of homotopic classes
of paths. However, for notational convenience we shall retain the set
^l(P(S1)) and talk about functions on the space of paths rather than on the
space of homotopic classes of paths.

4. QUANTIZATION IN THE PATH SPACE P(S1)

Let us consider setting up a quantum theory on the circle M 5 S1 of
radius r. The circle S1 is topologically similar to the plane R2 with a hole,
so our previous constructs apply with little alteration. We take as our coordi-
nate on S1 the angle variable u P [0, 2p), which measures the angular distance
from some fixed point m0 on S1 coordinated by u 5 0 to any other point m
coordinated by u.

4.1. The Hilbert Space

We now construct a Hilbert space out of functions defined on the path
space P(S1). We start with the set ^l(P(S1)) of functions on P(S1) satisfying
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the five properties listed in the preceding section with a chosen universal
path difference constant l. A function fl P ^l(P(S1)) will then be of the form

fl(sm,l) 5 ei⁄,"lf(m), m P S1 (26)

where f is a single-valued function on S1. We can conveniently rewrite
functions in ^l(P(S1)) as multivalued functions of the coordinate u, i.e., as
a multivalued function Fl(u, l) of angle u and winding number l of the path sm,l:

fl(sm,l) 5 Fl(u, l) 5 ei⁄,"lf(u), u P [0, 2p) (27)

Sharing the same universal path difference constant l, these functions can
be added to form a vector space. An l-independent scalar product can also
be defined as

^ fl. f 8l&l 5 ^Fl.F 8l&l 5 #
2p

0

F*l (u, l) F 8l(u, l) dm(u) (28)

The volume element is taken as dm(u) 5 du. This scalar product space can
be completed in the usual way to form a Hilbert space *l(P(S1)). We have
in effect a set of Hilbert spaces *l 5 *l(P(S1)) parameterized by the
universal path difference constant l. Each *l contains functions which change
phase by the same amount l when taken around a single loop anticlockwise.
It should be stressed that we cannot superpose functions from different
*l’s. Let

Fl(u, l) 5 ei⁄,"lf(u) P *l, F 8l8(u, l) 5 ei⁄,"l8f8(u) P *l8 (29)

If we carry out a formal sum, we get

Fl(u, l) 1 F 8l8(u, l) 5 ei/,"l f(u) 1 ei⁄,"l8 f8(u) (30)

which belongs to neither *l(P(S1)) nor *l8(P(S1)).
Let us examine the description of the functions in *l(P(S1)) in more

detail before we introduce operators. The first thing to note is that looping
around the circle can be described by introducing an extended coordinate
variable uex which varies from 2` to `. The first loop around anticlockwise
corresponds to uex taking values in the range [2p, 4p), and the first loop
around clockwise corresponds to values in the range [22p, 0) and so on.
So, we can imagine functions in *l to be functions defined for uex P R 5
(2`, `).

We conclude that functions in *l(P(S1)) can be treated explicitly in
one of the following forms:

1. As single-valued functions fl(sm,l) on the path space P(S1)
2. As multivalued functions Fl(u, l) on the circle S1
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3. As single-valued functions Cl(uex) on R related to Fl(l, u), and hence
to fl(sm,l) by

Cl(uex) 5 Fl(u, l) 5 fl(sm,l) 5 ei⁄,"l f(u), where uex 5 u 1 2lp

(31)

In the rest of the paper we shall always adhere to the notation uex P (2`,
`), u P [0, 2p), and the relation uex 5 u 1 2lp, whenever these variables
are mentioned. The reasons for introducing Cl(uex) are twofold: first, we are
more familiar in dealing with single-valued functions on R than multivalued
functions on S1 or functions on path space, and, more importantly, the variable
uex embodies a notion of continuity of flow as we go around and around the
circle, a notion very useful in appreciating some important mathematical
models of physical situations, such as a current flowing around a conduct-
ing ring.

To help us appreciate the whole situation, we can compare the Hilbert
spaces *l(P(S1)) with the familiar space L2 (0, 2p) of square-integrable
functions c(u) on the open interval (0, 2p) with respect to the volume element
du. First, introduce a formal translation operator T̂a acting on Cl(uex) by

T̂aCl(uex) 5 Cl(uex 2 a) (32)

The effect is literally to translate the function Cl(uex) by the amount a.
Translating the function by a loop around S1 can be effected by

T̂2pCl(uex) 5 C(uex 2 2p) 5 Fl(u, l 1 1) (33)

We shall consider *l50 and *lÞ0 separately as follows:
1. *l50: We can establish a natural mapping between *l50 and L2(0,

2p). First, each continuous function c(u) P L2(0, 2p) can be related to a
Cl50(uex) P *l50 by

Cl50(uex) 5 c(u), uex Þ 2lp (34)

Cl50(0) 5 c(0+) 5 lim
u→0

c(u) (35)

Cl50(2lp) 5 Cl50(0) (36)

When translated by 2p, Cl50(uex) just repeat themselves:

T̂2pCl50(uex) 5 Cl50(uex) (37)

These functions are called periodic in uex on account of Eqs. (36) and (37).
A typical example is

Cl50(uex) 5 ei⁄,"nu for some integer n (38)
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However, not every function is periodic in a continuous manner in uex, i.e.,
being periodic and continuous in uex. Consider the following continuous
function in L2(0, 2p):

c(u) 5 ei⁄,"bu/2p, where b is a real number,

but not an integer multiple of p (39)

The corresponding function Cl50(uex) is given by

Cl50(uex) 5 ei/"bu/2p, uex Þ 2lp (40)

Cl50(2lp) 5 Cl50(0) 5 c(0+) 5 1 (41)

There is a discontinuity at uex 5 2lp since

Cl50(2p2) 5 lim
uex→2p2

Cl50 (uex) 5 ei"b Þ Cl50 (2p) 5 1 (42)

Having to be periodic, the function Cl50 is discontinuous at uex 5 2lp. We
can conveniently symbolize the relations defined by (34) and (36) between
L2 (0, 2p) and *l50 by writing5

Cl50 5 Ûl50c (43)

Clearly Ûl50 may be regarded as a unitary operator relating L2(0, 2p) to *l50.
2. *lÞ0: Again this can be mapped to L2(0, 2p), but in a different

manner. Each continuous function c(u) P L2(0, 2p) can be mapped to ClÞ0

(uex) P *lÞ0 by

ClÞ0(uex) 5 ei⁄"llc(u), uex Þ 2lp (44)

ClÞ0(0) 5 c(0+) (45)

ClÞ0(2lp) 5 ei⁄"ll ClÞ0(0) (46)

These functions are called quasiperiodic. A typical example is

ClÞ0(uex) 5 ei⁄"(n1l/2p)u for some integer n (47)

Again there are discontinuities generally. For example, in (39) we have

ClÞ0(uex) 5 ei⁄l"lc(u) 5 ei⁄l"l ei,"bu/2p, uex Þ 2lp (48)

ClÞ0(2lp) 5 ei⁄l"lC(0+) 5 ei⁄l"l (49)

5 Since continuous functions c in L2(0, 2p) form a dense set, relations (34) and (36) can be
continuously extended to give a definition of a unique bounded operator Ûl50 on the entire
Hilbert space L2(0, 2p).
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Clearly there are discontinuities at uex 5 2lp. For example, we have

ClÞ0(2p2) 5 ei⁄"leib Þ ClÞ0(2p) 5 ei⁄"l (50)

We can similarly symbolize the relations defined by (44)–(46) between L2(0,
2p) and *lÞ0 by writing

ClÞ0 5 ÛlÞ0c (51)

Again ÛlÞ0 may be regarded as a unitary operator relating L2(0, 2p) to *lÞ0.

To define self-adjoint differential operators in L2(0, 2p), we usually
introduce a differential expression to act on the dense subset C`

0 (0, 2p) of
infinitely differentiable functions of compact support in (0, 2p), i.e., for each
w(u) P C`

0 (0, 2p) there is an interval [u1, u2] , (0, 2p) such that w(u) 5 0
for u lying outside [u1, u2]. This would produce symmetric operators, and
we can then go on to unearth their selfadjoint extensions. In our present
situation we shall proceed similarly in *l(P(S 1)). First we shall single out
a similar set of smooth functions in *l(P(S 1)). Let C`

0;l(P(S 1)) be the set
of functions Fl(uex) in *l(P(S 1)) defined in terms of w(u) P C`

0 (0, 2p)
according to Eq. (44)–(46). These functions possess the following properties:

1. Fl(uex) is infinitely differentiable with respect to uex.
2. For every Fl(uex) there exists a closed interval [u1, u2] , (0, 2p)

such that Fl(uex) vanishes for every value of uex corresponding to u lying
outside the interval [u1, u2].

Clearly C`
0;l (P(S1)) is a dense subset of *l(P(S 1)), being the unitary equiva-

lence of the subset C`
0 (0, 2p), which is known to be dense in L2(0, 2p).

Intuitively we can see that functions defined on the path space P(S 1)
can be perceived to be defined on a helix (Fig. 4). The extended angle variable
uex can be visualized as varying along the helix, and a differentiation with
respect to uex as a differentiation along the helix. The values of such functions
at corresponding points on successive loops differ by a phase factor.

Note that although functions Fl(uex) are formally defined for the entire
range of values of uex P (2`, `), the scalar product involves an integral
only over the range (0, 2p):

^Fl(uex).Fl(uex)&l 5 #
2p

0

F*l (uex)Fl(uex) duex (52)

4.2. The Position and Momentum Operators in *l(P(S1))

We can define the angular position operator on the Hilbert space
*l(P(S1)) as either ûl,
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Fig. 4. The path space forms a helix.

ûlFl(u, l) 5 uFl(u, l) (53)

or ûex,l,

ûex,lCl(uex) 5 uexCl(uex) (54)

with expectation values similarly given either by

^Fl(u, l).ûlFl (u, l)&l 5 #
2p

0

F*l (u, l)u Fl(u, l) du (55)

or by

^Cl(uex).ûex,lCl(uex)&l 5 #
2p

0

C*l (uex)uexCl(uex) duex (56)

This angular position operator is a bounded self-adjoint operator which acts
in the same way in all *l(P(S1)), independent of l. One can say that there
is a unique angular position operator on the circle S1, denoted simply by û
or ûex. Note that although uex as a variable has a formal range of (2`, `)
of values, the operator expression ûex has only finite expectation values.
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It is more involved when we come to define a self-adjoint (linear)
momentum operator; momentum operators are unbounded, a fact requiring
careful specification of their domains of operation. Let us first recall the
operator p̂0 5 (2i"/r)d/du acting on the dense domain C`

0 (0, 2p) in the
Hilbert space L2(0, 2p). It is well known that this operator is only symmetric,
but it admits a one-parameter family of self-adjoint extensions p̂l 5 (2i"/
r)d/du characterized by their domains $l(0, 2p) , L2(0, 2p) which consist
of absolutely continuous functions wl(u) on the interval (0, 2p) satisfying
the following quasiperiodic boundary condition [8]:

w(2p2) 5 eilw(0+), l P [0, 2p) (57)

In *l(P(S1)) we can similarly introduce an operator ℘̂0;l acting on
C`

0;l(P(S1)) , *l(P(S1) by

℘̂0;lFl(uex) 5 2
i"
r

Fl(uex)

uex
, Fl(uex) P C`

0;l (P(S1)) (58)

This operator is symmetric, and not self-adjoint in *l(P(S1)). We now need
to investigate possible self-adjoint extensions to ℘̂0;l in *l(P(S1)). Let us
now consider the following two cases:

1. In the Hilbert space *l50(P(S1)). Since functions in *l50(P(S1))
satisfy the periodic boundary condition, the natural self-adjoint
extension is the one corresponding to p̂l in L2(0, 2p) with l 5 0.
In other words, we have a self-adjoint extension to ℘̂0l50, denoted
by ℘̂l50, defined on the domain consisting of functions in
*l50(P(S1)) which are absolutely continuous6 in uex P R. Note that
the continuity requirement implies that functions in the domain of
operation of ℘̂l50 are periodic in a continuous manner in uex.

2. In Hilbert space *lÞ0(P(S1)). Since functions in *lÞ0(P(S1)) satisfy
the quasiperiodic boundary condition, the natural self-adjoint exten-
sion is the one corresponding to p̂l in L2(0, 2p) with l Þ 0. In
other words we have a self-adjoint extension to ℘̂0;lÞ0, denoted by
℘̂lÞ0, defined on the domain consisting of functions in *lÞ0(P(S1))
which are absolutely continuous in uex. These functions satisfy quasi-
periodic boundary conditions (46) in a continuous manner in uex.

Note that ℘̂l possesses a purely discrete spectrum pl,n with normalized
eigenfunctions wpl,n given by

wpl,n (uex) 5 (1/!2p) exp [i⁄" (n 1 l/2p)uex] (59)

with pl,n 5 (1/r)"(n 1 l/2p) for some integer n.

6 Absolutely continuous functions are once differentiable almost everywhere [8].
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The striking feature here is that it is possible to single out a preferred
extension ℘̂lÞ0 acting on absolutely continuous functions in each Hilbert
space *lÞ0(P(S1)), a situation not available in L2(0, 2p).

4.3. Kinetic Energy Operators in *l(P(S1))

The system we have in mind is a quantum circuit system where an
electron or a current in a superconductor is confined to flow around a circular
conducting ring. There are two scenarios: (1) the ring is cut so that a very
narrow insulating gap appears to interrupt the otherwise continuous ring, and
(2) we have a continuous ring without any cut. Clearly the first case is more
complex and more interesting. An electron or a superconducting current is
capable of tunneling through the insulating gap, known as a tunneling junction
or a Josephson junction, respectively, to maintain a steady current flow.
Physically an insulating gap in the ring represents a perturbation or a local
interaction to the free flow of the electron or a superconducting current at
the cut. Such an interaction is referred to as a point interaction. A systematic
and rigorous mathematical analysis of point interactions is available [12].
Traditional treatments consist in introducing a Hamiltonian with a kind of
d-function potential [13, 14] or some ad hoc theory [15] put in by hand.
Now, a ring with a cut at u 5 0, denoted by S1

c, may be visualized as a circle
with the point u 5 0 removed. We can establish a theory on the Hilbert
space L2(S1

c), since we can identify L2(S1
c) naturally with L2(0, 2p). To obtain

a kinetic energy operator in L2(0, 2p) we start with the differential operator
K̂0 on C`

0 (0, 2p):

K̂0 5 2
"2

2mr 2

2c(u)
u2 , c(u) P C`

0 (0, 2p) (60)

This operator is symmetric. An obvious self-adjoint extension is simply

K̂l 5
1

2m
p̂2

l (61)

However, K̂0 possesses a large number of other self-adjoint extensions, some
of which will be discussed in what follows [11].

Clearly we can transfer all the technical results from L2(0, 2p) to the
Hilbert space *l(P(S1)) in a unitary manner using the unitary operator Ûl

introduced earlier. We shall illustrate this by constructing an explicit theory
to model the Josephson effect in a superconducting ring interrupted by a
narrow cut. This result would demonstrate that a path space approach is a
natural way to proceed.
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4.4. A Model Theory of Josephson Effect in *l(P(S1))

Within L2(0, 2p) there is a class of self-adjoint extensions K̂a,b to K̂0

which are characterized by two real parameters a, b in the sense that the
extension operator K̂a,b acts on a domain $a,b P L2(0, 2p) consisting of twice-
differentiable functions c(u) in L2(0, 2p) satisfying the following boundary
conditions [11]:

c8(2p2) 5 ac(2p2) 1 bc(0+) (62)

c8(0+) 5 2ac(0+) 2 bc(2p2) (63)

where the prime represents differentiation, i.e., c8(u) 5 dc(u)/du. To transfer
these results in L2(0, 2p) to *l(P(S1)), we can write down the corresponding
operators in *l(P(S1)) by

_̂a,b;l 5 ÛlK̂a,bÛ †
l (64)

and through Ûl we can write down the corresponding boundary conditions
at uex 5 2p for the functions in the domain of _̂a,b;l:

C8l(2p2) 5 a Cl(2p2) 1 be2ilCl(2p+) (65)

e2ilC8l(2p+) 5 2ae2ilCl(2p+) 2 bCl(2p2) (66)

The resulting self-adjoint operator in *l(P(S 1)) will be denoted by _̂a,b;l.
In a superconductor the electrons form pairs known as Cooper pairs

which go around the superconductor to form a measurable electrical current
known as a supercurrent. The totality of these Cooper pairs constitutes what
is known as the condensate, which can tunnel through the Josephson junction
to form a stable direct current. We can model such a physical system in the
Hilbert space *l(P(S1)). An electrical current is caused by the condensate
going around and around the circle. In the standard macroscopic wave function
approach [15] the condensate as a whole can be represented by a single
quasiparticle. To describe this quasiparticle in the Hilbert space *l(P(S1))
we would identify (1) the quasiparticle’s position with the extended angular
position operator ûex which has a formal range of values (2`, `), (2) the
quasiparticle’s (linear) momentum with the operator ℘̂l in *l(P(S1)), and
(3) the quasiparticle’s state with a normalized function Cl(uex) P *l(P(S1)).

To have a current flow we require the state to be an eigenfunction of
the momentum operator ℘̂l in *l(P(S1)), i.e., wpl,n(uex) given by Eq. (59),
since an electrical current is proportional to the momentum [10]. To maintain
a stable and time-independent current the state must be a stationary state,
i.e., it must be an eigenfunction of the Hamiltonian of the system. In the
traditional treatment an ad hoc arrangement has to be devised to set up a
Hamiltonian for this superconducting system [15]. In our present theory, all
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we need is to take the self-adjoint operator _̂a,b;l in *l(P(S1)) specified by
boundary conditions (65), (66) as the Hamiltonian. The requirement that
wpl,n be an eigenfunction of _̂a,b;l acting as the Hamiltonian means that
wpl,n must satisfy the self-adjointness boundary conditions (65), (66).
Substituting wpl,n into (65, 66) gives

0 5 a 1 b cos l (67)

pl,n 5 ("b/r) sin l (68)

The parameter a is seen to be dependent on l and the other parameter b,
i.e., a 5 2b cos l. Equation (68) then leads to

pl,n 5 p0 sin l, p0 5 "b/r (69)

This in effect is the famous Josephson equation, when we take the supercurrent
to be proportional to pl,n [10, 11]. The physical interpretation is transparent
now. The wave function wpl,n (uex) describing the system can be regarded as
a continuous single-valued function of the extended position variable uex.
When the quasiparticle passes the junction in completing a loop, i.e., uex

increases by 2p, the phase of the wave function increases smoothly by l.
This phase is the all-important quantity here since it determines the magnitude
of the supercurrent through pl,n. The traditional description in terms of func-
tions of u will have to consider multivalued functions on S1 where the wave
function changes abruptly at the junction.

4.5. Superselection Rules

In the case of a superconducting current going around in a circle dis-
cussed above, the current is of a macroscopic magnitude and there is no
evidence of any state being a superposition of states corresponding to different
supercurrent, e.g., there is no superposition of wpl,n(uex) and wpl8,n(uex) corres-
ponding to currents with different phase constants l and l8. This can be
explained by the existence of a superselection rule forbidding such a superpo-
sition [10, 11]. There has been a lot of controversy about superselection rules
ever since they were introduced to tackle the quantum measurement problem
[5], on account of the difficulty in establishing a superselection rule within
orthodox quantum mechanics. There have been many attempts to derive
superselection rules based on various physical arguments. Here we have a
derivation not based on an ad hoc argument, but directly on the fundamental
structure of the theory. Quantum mechanics on path space automatically
generates a whole family of Hilbert spaces *l(P(S1)) in such a way that
functions from different spaces *l(P(S1)) and *l8(P(S1)) cannot be added
together, as shown in the argument following Eq. (30). In other words, the
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theory has a built-in superselection rule forbidding any superposition of
functions from different spaces of the family. This would then explain why,
physically, there is no superposition of wPl,n(uex) and wPl8,n(uex) corresponding
to currents with different phase constants l and l8. One can include superse-
lection rules explicitly in the theory by forming a direct integral Hilbert space

*% 5 #
%

*l(P(S1)) dm(l) (70)

A systematic formulation of superselection rules in terms of direct integral
Hilbert spaces and a justification of the superselection rule in superconductiv-
ity in terms of standard microscopic BCS theory have recently been presented
by Wan et al. [18].

4.6. Circular Motion in a d-Potential

Within L2(0, 2p) there is a class of self-adjoint extensions K̂d to K̂0

given by the following boundary conditions (Appendix):

2
2mV0

"2 c(2p2) 5 c8(2p2) 2 eil c8(0+), V0 . 0 (71)

2
2mV0

"2 eil c(0+) 5 c8(2p2) 2 eil c8(0+) (72)

When these are transferred to *l(P(S1)), using Ûl, we get

2
2mV0

"2 C(2lp2) 5 C8(2lp2) 2 C8(2lp+) (73)

2
2mV0

"2 C(2lp+) 5 C8(2lp2) 2 C8(2lp+) (74)

These are the standard boundary conditions for a repulsive d-potential cen-
tered at uex 5 2lp [12–14, 18]. It follows that we can visualize K̂d acting as
a Hamiltonian with a simple point interaction in the form of a repulsive
d-potential of strength V0 centered7 at the cut in S1

c. The corresponding

7 Intuitively, such a Hamiltonian may be written as

2
"2

2mr 2

d 2

du2 1 V0 d(u)
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operator _̂d;l 5 ÛlK̂dÛ †
l in *l(P(S1)) admits the following eigenfunctions:

C(uex) 5 Aei⁄"ll 1eiku 1 1 eil 2 e2ikp

e22ikp 2 eil2 e2iku2, uex Þ 2lp (75)

where A is a normalization constant, and k is a real constant related to l and
V0 by

k 5 2
mV0

"2 1 sin 2kp
cos 2kp 2 cos l2 (77)

The corresponding eigenvalues are E 5 ("k)2/2m. An attractive d-potential
can be similarly constructed.

Surprising as it may seem, a self-adjoint extension of a symmetric kinetic
energy operator can behave like a Hamiltonian with an effective potential.
We have recently demonstrated that a large class of point interactions for
one-dimensional systems on the real line R can be identified with various
self-adjoint extensions to the kinetic energy operator on the real line with a
cut because they are both characterized by boundary conditions [16]. The
characterization of point interactions by boundary conditions at the cut spans
a comprehensive range of physical effects. Another example of these is seen
in the following section.

All these just reinforce a fundamental assumption of quantum mechanics
that observables should be represented by self-adjoint operators, if at all
possible [17].

4.7. Circular Motion in a d8-Potential

Another simple point interaction involves a so-called d8-potential. Con-
sider a self-adjoint extension K̂d8 to K̂0 determined by the following boundary
conditions (Appendix):

2
2mV0

"2 (c(2p2) 2 eil c(0+)) 5 eil c8(0+), V0 . 0 (78)

2
2mV0

"2 (c(2p2) 2 eil c(0+)) 5 c8(2p2) (79)

When transferred to *l(P(S 1)) the above conditions become

2
2mV0

"2 (C(2lp2) 2 C(2lp+)) 5 C8(2lp+) (80)

2
2mV0

"2 (C(2lp2) 2 C(2lp+)) 5 C8(2lp2) (81)
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These are the standard boundary conditions for a repulsive d8-potential cen-
tered at uex 5 2lp [12, 18]. The corresponding operator _̂d8;l 5 ÛlK̂d8Û †

l in
*l(P(S1)) admits the following eigenfunctions:

C(uex) 5 Aei⁄"ll 1eiku 1 1 e2ikp 2 eil

e22ikp 2 eil2e2iku2, uex Þ 2lp (82)

where A is a normalization constant, and k is a real constant related to l and
V0 by

k 5
4mV0

"2 1cos 2kp 2 cos l
sin 2kp 2 (83)

The corresponding eigenvalues are E 5 ("k)2/2m.

4.8. The Kronig–Penny Model and the Path Space of S1

Functions in the Hilbert space *l(P(S1)) resemble Bloch functions in
solid-state physics. Take the idealized example of a Kronig–Penny model of
a one-dimensional periodic crystal lattice, which pictures the effect of the
one-dimensional crystal as an infinite array of d-potentials, of strength V0,
evenly spaced on the point set Z 5 {xl 5 la, l 5 0, 61, 62, . . .} on the
real line R [13, 14]. The Hamiltonian for an electron in such a crystal is
traditionally written as

ĤKP 5 2
"2

2m
d 2

dx2 1 (
l

V0 d(x 2 la) (84)

An alternative and mathematically rigorous definition of this Hamiltonian is
to introduce the kinetic energy operator by the differential expression 2("2/
2m) d 2/dx2 acting on C`

0 (R 2 Z ). The resulting operator is symmetric, but
it possesses infinitely many self-adjoint extensions. One of the self-adjoint
extensions, denoted by K̂KP , is specified by a domain consisting of continuous
functions in L2(R) which are twice-differentiable on R 2 Z and satisfying
the following d-potential boundary condition at every point in Z [12]:

c8(xl1) 2 c8(xl2) 5 12m
"2 V02 c(xl), xl P Z (85)

For example, one can easily check that the generalized eigenfunctions of ĤKP

satisfy this boundary condition [14]. We can therefore identify ĤKP with K̂KP.
Generally for a perfectly periodic potential with periodicity a the general-

ized eigenfunctions of the Hamiltonian are known to be of the form [14]

hk(x) 5 eikxuk(x) (86)

where k is a real number and uk(x) is a periodic function of x, i.e.,
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uk(x 2 a) 5 uk(x). These are Bloch functions in solid-state physics. Using
the translation operator T̂a again, we have, for any integer l,

T̂lahk(x) 5 hk(x 2 la) 5 e2ikla hk(x) (87)

Since the derivative u8k(x) is periodic on account of the periodicity of uk(x),
the derivative h8k(x) also satisfies (87), i.e.,

h8k(x) 5 ikhk(x) 1 eikx u8k (x) ⇒ T̂lah8k(x) 5 e2ikla h8k (x) (88)

For the specific case of periodic d-potentials, hk(x) must also satisfy the
following additional boundary conditions [12] at x 5 la, where the d-potentials
are centered:

h8k(la+) 2 h8k (la2) 5 12m
"2 V02 hk(la) and hk(la+) 2 hk(la2) 5 0

(89)

It appears at first sight that Bloch functions arise naturally as functions
in our path space theory on S1, since every *l(P(S1)) consists of quasiperiodic
functions Cl in uex. A quantum particle going around and around in S 1 with
a single d-potential also appears to resemble a particle in the Kronig–Penny
model moving in the straight line R encountering a d-potential periodically,
especially when we set the periodicity a 5 2p. However, a simple identifica-
tion of Bloch functions with functions in *l(P(S 1)) fails since Bloch functions
possess a range of phase constants k, while once a *l(P(S1)) is chosen, the
phase constant l is fixed. So we have to form an appropriate direct integral
space over *l(P(S1)) with different l. This can be achieved technically by
first constructing a Hamiltonian with a d-potential in L2(0, 2p) defined on a
domain satisfying the following additional boundary conditions:

ck(2p2) 5 eil ck(0+), c8k(2p2) 5 eilc8k(0+) (90)

ck(p2) 5 ck(p+), c8k(p+) 2 c8k(p2) 5 V0ck(p)

In other words, we are taking a Hamiltonian in L2(0, 2p) of the form

K̂l 1
2m
"2 V0 d(u 2 p) (91)

These conditions resemble conditions (89) for Bloch functions hk(x) for some
specific k. One then has to perform a direct integral of these Hamitonians,
corresponding to different l, to obtain a final Hamiltonian in order to be
able to compare with ĤKP [12]. Finally, one can transfer the results on L2(0,
2p) to a corresponding direct integral of *l(P(S 1)).
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It is clear that the origin of the quasiperiodic nature of the wave function
in the path space theory on the circle S 1, and in a periodic potential in
traditional solid-state physics with R as the physical space is, fundamen-
tally different.

5. CONCLUDING REMARKS

We have seen that the path space offers a formulation of quantum
mechanics which can naturally lead to new physical insights under certain
circumstances. The application of the path space formulation to closed circuit
configurations is particularly interesting in view of its easy accommodation
of physical quantities like the momentum operator ℘̂l together with its
eigenfunctions (59), which are single-valued and continuous functions of
the extended angle variable uex. This constrasts sharply with the need for
discontinuous and possibly multivalued functions in the traditional formula-
tion in the Hilbert space L2(S1

c). When the path space formalism is employed
to describe the condensate in a circuit with a Josephson junction, the superse-
lection rules emerge in a natural manner.

APPENDIX

Let AC(S1
c) be the set of absolutely continuous functions f on S1

c such that

df
du

P AC(S1
c),

d 2f
du2 P L2(S1

c) 5 L2(0, 2p)

Let a 5 {a82, a2, a81, a+} and b 5 {b82, b2, b81, b+} be two sets of complex

numbers subject to the following two conditions:
(C1) The first set is not a multiple of the second set, i.e., there is no

number d such that a82 5 db82, a2 5 db2, a81 5 db81, and a+ 5 db+.
(C2) These complex numbers are related by

a8*2 a2 2 a*2a82 5 a8*1 a+ 2 a*1a81, b8*2 b2 2 b*2b82 5 b8*1 b+ 2 b*1b81

a8*2 b2 2 a*2b82 5 a8*1 b+ 2 a*1b81, b8*2 a2 2 b*2a82 5 b8*1 a+ 2 b*1a81

Finally, let $a,b be a subset of AC(S1
c) consisting of functions f satisfying

the following boundary conditions:

a82 f82 2 a2f2 5 a81f81 2 a+f+ (92)

b82 f82 2 b2f2 5 b81f81 2 b+f+ (93)
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where f82 and f81 are the derivatives of f with respect to u evaluated at
u 5 0 and u 5 2p, respectively. All self-adjoint extensions of K̂0 are given
by the following theorem [9]:

Theorem. The operator K̂a,b defined on the domain $a,b by

K̂a,bf 5 2
"2

2mr 2

d 2f
du2 , ∀f P $a,b

is self-adjoint in L2(0, 2p) and conversely every self-adjoint extension of K̂0

is of this form.
We have the following two cases:
1. Case 1. d-potential: Boundary conditions (71), (72) amount to

choosing

a82 5 eil, a2 5 0,

a81 5 1, a+ 5 2(2mV0/"2) (94)

b82 5 eil, b2 5 (2mV0/"2)eil,

b81 5 1, b+ 5 0

Conditions (C1) and (C2) are satisfied. It follows that (71), (72) do lead to
a self-adjoint extension of K̂0 in L2(0, 2p).

2. Case 2. d8-potential: Boundary conditions (78), (79) amount to
choosing

a82 5 2eil, a2 5 2(2mV0/"2)eil,

a81 5 0, a+ 5 2(2mV0/"2) (95)

b82 5 0, b2 5 2(2mV0/"2)eil,

b81 5 1, b+ 5 2(2mV0/"2)

Conditions (C1) and (C2) are satisfied. It follows that (78), (79) do lead to
a self-adjoint extension of K̂0 in L2(0, 2p).
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